Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 321: 121321, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739543

RESUMO

Starch phosphorylation mediated by α-glucan, water dikinase is an integral part of starch metabolism. So far however, it is not fully understood. For getting deeper insights, several in vitro assays and intensive mass spectrometry analyses were performed. Such analyses allowed us to determine the phosphorylation position within the amylopectin in detail. Thus, unique features of the starch structure and GWD action were correlated. Therefore, recombinant potato GWD (Solanum tuberosum L.; StGWD) was used for detailed analyses of the phosphorylation pattern of various starches. Additionally, oil palm (Elaeis guineensis Jacq.; EgGWD) GWD was cloned and characterized, representing the first characterization of GWD of a monocot species. The distribution patterns of single phosphorylated glucan chains catalyzed by both GWDs were compared. The phosphorylation distribution patterns of both GWDs varied for different starches. It was proven that GWD phosphorylates different positions within the amylopectin of native starch granules. GWD enters the starch granule surface and phosphorylates the glucosyl units in the proximity of branching points to convert the highly ordered glucan chains into a less ordered state and to render them accessible for the downstream acting hydrolases. This enables deciphering the GWD actions and the related structural properties of starch granules.


Assuntos
Glucanos , Solanum tuberosum , Fosfatos , Amilopectina , Amido , Água
2.
Polymers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631548

RESUMO

Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.

3.
Front Plant Sci ; 14: 1220237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554560

RESUMO

The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches.

4.
Data Brief ; 48: 109043, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36969972

RESUMO

Oil palm (Elaeis guineensis Jacq.) is one of the most important oil-producing crops in the world. However, the demand for oil from this crop is expected to increase in the future. A comparative gene expression profile of the oil palm leaves was needed in order to understand the key factors that influence the oil production. Here, we reported an RNA-seq dataset from three different oil yields and three different genetic populations of oil palm. All raw sequencing reads were obtained from an Illumina NextSeq 500 platform. We also provide a list of the genes and their expression levels resulting from the RNA-sequencing. This transcriptomic dataset will provide a valuable resource for increasing oil yield.

5.
Sci Rep ; 12(1): 21087, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473892

RESUMO

Basal stem rot disease (BSR) caused by G. boninense affects most oil palm plants in Southeast Asia. This disease can be fatal to palm oil production. BSR shows no signs on the tree in the early stages of infection. Therefore, it is essential to find an approach that can detect BSR disease in oil palm, especially at any level of disease severity in the field. This study aims to identify biomarkers of BSR disease in oil palm stem tissue based on various disease severity indices in the field using 1H NMR-based metabolomics analysis. The crude extract of oil palm stem tissue with four disease severity indices was analyzed by 1H NMR metabolomics. Approximately 90 metabolites from oil palm stem tissue were identified.Twenty of these were identified as metabolites that significantly differentiated the four disease severity indices. These metabolites include the organic acid group, the carbohydrate group, the organoheterocyclic compound group, and the benzoid group. In addition, different tentative biomarkers for different disease severity indices were also identified. These tentative biomarkers consist of groups of organic acids, carbohydrates, organoheterocyclic compounds, nitrogenous organic compounds, and benzene. There are five pathways in oil palm that are potentially affected by BSR disease.


Assuntos
Metabolômica , Espectroscopia de Prótons por Ressonância Magnética
6.
Front Plant Sci ; 13: 1039534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407636

RESUMO

An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.

7.
Food Chem ; 393: 133361, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671660

RESUMO

Oil palm (Elaeis guineensis Jacq.) is the most productive oil-producing crop per hectare of land. The oil that accumulates in the mesocarp tissue of the fruit is the highest observed among fruit-producing plants. A comparative analysis between high-, medium-, and low-yielding oil palms, particularly during fruit development, revealed unique characteristics. Metabolomics analysis was able to distinguish accumulation patterns defining of the various developmental stages and oil yield. Interestingly, high- and medium-yielding oil palms exhibited substantially increased sucrose levels compared to low-yielding palms. In addition, parameters such as starch granule morphology, granule size, total starch content, and starch chain length distribution (CLD) differed significantly among the oil yield categories with a clear correlation between oil yield and various starch parameters. These results provide new insights into carbohydrate and starch metabolism for biosynthesis of oil palm fruits, indicating that starch and sucrose can be used as novel, easy-to-analyze, and reliable biomarker for oil yield.


Assuntos
Arecaceae , Amido , Arecaceae/metabolismo , Biomarcadores/metabolismo , Frutas , Óleo de Palmeira/metabolismo , Amido/metabolismo , Sacarose/metabolismo
8.
Plant Physiol Biochem ; 180: 35-41, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378390

RESUMO

The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.

9.
Plant Sci ; 318: 111223, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351303

RESUMO

Starch is a complex carbohydrate polymer produced by plants and especially by crops in huge amounts. It consists of amylose and amylopectin, which have α-1,4- and α-1,6-linked glucose units. Despite this simple chemistry, the entire starch metabolism is complex, containing various (iso)enzymes/proteins. However, whose interplay is still not yet fully understood. Starch is essential for humans and animals as a source of nutrition and energy. Nowadays, starch is also commonly used in non-food industrial sectors for a variety of purposes. However, native starches do not always satisfy the needs of a wide range of (industrial) applications. This review summarizes the structural properties of starch, analytical methods for starch characterization, and in planta starch modifications.


Assuntos
Amilopectina , Amido , Amilopectina/metabolismo , Amilose/metabolismo , Metabolismo dos Carboidratos , Plantas/metabolismo , Amido/metabolismo
10.
Data Brief ; 41: 107914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35198689

RESUMO

Oil palm breeding and seed development have been hindered due to the male parent's incapacity to produce male inflorescence as a source of pollen under normal conditions. On the other hand, a young oil palm plantation has a low pollination rate due to a lack of male flowers. These are the common problem of sex ratio in the oil palm industry. Nevertheless, the regulation of sex ratio in oil palm plants is a complex mechanism and remains an open question until now. Researchers have previously used complete defoliation to induce male inflorescences, but the biological and molecular mechanisms underlying this morphological change have yet to be discovered. Here, we present an RNA-seq dataset from three early stages of an oil palm inflorescence under normal conditions and complete defoliation stress. This transcriptomic dataset is a valuable resource to improve our understanding of sex determination mechanisms in oil palm inflorescence.

11.
Data Brief ; 34: 106745, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33537371

RESUMO

Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae) is an essential insect pollinator in oil palm plantations. Recently, researches have been undertaken to improve pollination efficiency using this species. A fundamental understanding of the genes related to this pollinator behavior is necessary to achieve this goal. Here, we present the draft genome sequence, annotation, and simple sequence repeat (SSR) marker data for this pollinator. In total, 34.97 Gb of sequence data from one male individual (monoisolate) were obtained using Illumina short-read platform NextSeq 500. The draft genome assembly was found to be 269.79 Mb and about 59.9% of completeness based on Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment. Functional gene annotation predicted about 26.566 genes. Also, a total of 281.668 putative SSR markers were identified. This draft genome sequence is a valuable resource for understanding the population genetics, phylogenetics, dispersal patterns, and behavior of this species.

12.
Mitochondrial DNA B Resour ; 5(3): 3432-3434, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33458195

RESUMO

Elaeidobius kamerunicus is the most important insect pollinator in oil palm plantations. In this study, the mitochondrial genome (mitogenome) of E. kamerunicus (17.729 bp), a member of the Curculionidae family, will be reported. The mitogenome consisted of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a putative control region (CR). Phylogenetic analysis based on 13 protein-coding genes (PCGs) using maximum Likelihood (ML) methods indicated that E. kamerunicus belongs to the Curculionidae family. This mitochondrial genome provides essential information for understanding genetic populations, phylogenetics, molecular evolution, and other biological applications in this species.

13.
PLoS One ; 9(1): e84692, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404183

RESUMO

In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the development of new genetically modified plant generations. This research was conducted in order to isolate and characterize several new promoters from cassava (Manihot esculenta Crantz) elongation factor 1 alpha (EF1A) gene family.Three promoters MeEF1A3, MeEF1A5 and MeEF1A6 were successfully isolated [corrected]. Sequence analyses showed that all of the promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site. These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 5'UTR intron but with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion) in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC) technique. Transient expression assay that was done by using agroinfiltration method was used to show functionality of these promoters. Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific activity in tobacco seedlings (Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana fruits (Musa acuminata). We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering in cassava or other plants.


Assuntos
Manihot/genética , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Sequência Conservada , Expressão Gênica , Genes Reporter , Dados de Sequência Molecular , Motivos de Nucleotídeos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...